Mendeleev's Periodic Chart ### Discussion: Part A Dimetri Mendeleev arranged the elements by atomic mass and properties in his periodic table. His operating principle was that if the elements were arranged in order of increasing atomic weight the properties would repeat in a regular fashion. (Note he used atomic weight, today we use atomic number which is slightly better.) His work was published in 1871 some 25 years before the discovery of the electron. The families of elements in his chart have similar properties with these properties changing in a systematic way as we proceed from one element to another within each family. One of the things that Mendeleev was successful at doing was to predict the properties of unknown elements. In fact, he even instructed investigators where to look for these undiscovered elements. In this experiment, you will be presented with the properties of eighteen "known" elements or compounds and ten "unknowns". You are asked to place the "unknowns" in appropriate positions in their respective families by correlating the properties of these elements with the properties of the "knowns" in each family. ## Procedure: Part A - 1. Examine the samples of "knowns" on the next page and record properties missing on the worksheet. - 2. Examine the samples of "unknowns" and using the worksheet, locate these "unknowns" in their proper positions on the chart. - 3. Note that the families of elements included in this experiment are only families IA, IIA, IB, IVA, VIIA, and VIIIA. - 4. It is not within the spirit of this experiment to refer to additional sources of information other than a periodic chart. #### Unknown Elements for Part A | Nam
·e | Physical State | Density (G/mL) | Hardnes | Conductivity | Melting Point (C) | Solubility | Color | |-----------|----------------|----------------|---------|--------------|-------------------|------------|-----------------| | A | solid | 19.3 | soft | excellent | 1063 | none | yellow | | В | solid | 1.90 | brittle | none | 405 | good | white | | С | gas | 0.00973 | | poor | -71 | none | colorless | | D | gas | 0.00373 | | poor · | -157 | none | coloriess | | E | solid | 3.05 | brittle | none | 873 | good | white | | F | solid | 2.33 | brittle | semi-cond. | 1410 | none | steel-gray | | G | solid | 1.53 | soft | good | 39 | explodes | silver-metallic | | Н | gas | 0.00170 | | none | -220 | reacts | pale-yellow | | | solid | 5.32 · | brittle | semi-cond. | 937 | none | gray-white | | J | solid | 1.87 | soft | good | 28 | explodes | silver-metallic | # Chemistry with Mr. Lui Knowns for Part A | Period | for Part A Properties | I A | II A | IB | IVA | VII A | VIII A | |--------|---|--|--|---|--|--|---| | 1, . | Name physical state density (G/mL) hardness conductivity melting pt. (C) solubility (water) color | | IN/A | N/A | N/A | N/A | He
gas
0.00018
very poor
-269
none
colorless | | 2 | Name physical state density (G/mL) hardness conductivity melting pt. (C) solubility (water) color | Lithium
solid
0.534
soft
good
180
reacts | | N/A | Carbon 2.24 soft-brittle fair 3237 none | | Neon
gas
0.00090
very poor
-248
none
colorless | | 3 | Name physical state density (G/mL) hardness conductivity melting pt. (C) solubility (water) color | Sodium 0.971 soft good 98 rapid reaction | MgCl ₂ 2.33 brittle none 708 good | N/A | | Chlorine
gas
0.00321
very poor
-101
slight
yel-green | Argon
gas
0.00178
very poor
-189
none
colorless | | 4 | Name physical state density (G/mL) hardness conductivity melting pt. (C) solubility (water) color | Potassium 0.86 soft good 64 explodes— | CaCl ₂ 2.15 brittle none 772 good | Copper
8.96
soft
excellent
1083
none | | Bromine 3.12 very poor -7.2 negligible | | | 5 | Name physical state density (G/mL) hardness conductivity melting pt. (C) solubility (water) | | | Silver
10.49
soft
excellent
961
none | Tin
7.30
soft ·
good
232
none | lodine
4.94
soft
very poor
114
negligible | Xenon
gas
0.00585
very poor
-112
none
colorless | | 6 | Name physical state density (G/mL) hardness conductivity melting pt. (C) solubility (water) | | BaCl ₂ 3.85 brittle none 925 good | | Lead
11.4
soft
good
327
none | | |